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Abstract: Prognostics Health and Management (PHM) has become a hot research problem with the improvement of different
equipment. Besides, it is significant to assess the health status of equipment in PHM because an accurate health assessment can
guide maintenance plans for engineers. To accurately reflect equipment health status by an index, an assessment method based
on AHP-CRITIC dynamic weight is proposed in this paper. Analytic Hierarchy Process (AHP) is a subjective method used to
evaluate the importance of different indicators. The criteria importance through inter-criteria correlation (CRITIC) method is
used to calculate the contrast intensity of the same indicator and the conflict between indicators and obtain the objective weights.
A set of more scientific weights is gained by combining the weights obtained from AHP and CRITIC, respectively. Moreover, to
reflect each indicator’s real impact on overall health status, a dynamic weight adjustment mechanism is used. The case study of
suction nozzles of a specific type of chip mounter shows that this method can reflect the health status accurately.
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1 Introduction

The health status of equipment, which originates from the

medical field, reflects the ability of equipment to maintain a

certain level of reliability and maintainability [1]. An accu-

rate health status assessment is beneficial for predicting the

degradation of equipment. Furthermore, degradation predic-

tion is a vital part of prognostics and health management

(PHM), which aims to provide an integrated framework for

degradation prediction and maintenance policies to mechan-

ical and electrical equipment [2].

In general, there are two different ways to describe the

health status of equipment, one is to divide it into several

health levels, and the other is to describe it with a numeri-

cal value. Since the latter approach avoids the problem of

subjective classification and inaccuracy resulting from the

former, using a numerical value to assess health status is

preferred in current researches. A variety of health assess-

ment approaches have been proposed in these years, which

can be divided roughly into four categories. The first one

is data fusion-based approaches, integrating various moni-

toring data to determine equipment health level [3–6]. The

second one is fuzzy theory-based approaches [7, 8], due to

the fuzziness of the health status. The third one is machine

learning (ML)-based approaches, many ML techniques have

been utilized to evaluate the health status of equipment, such

as support vector data description (SVDD) [9], support vec-

tor machines (SVM) [10] and deep learning [11], etc. The

fourth one is hybrid approaches [1, 12], which integrate the

merits of different methods and make the assessment more

accurate.

The data fusion-based approaches have the advantage of

outstanding practicality and interpretability because these

methods make assessments by weighting the health moni-
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toring indicators to get a health index, and the meaning of

indicators are explicit. [13] used information entropy fusion

to extract features to analyze the health of turbo-shaft engine

gas-path. [14] proposed a mechanical equipment health as-

sessment method based on fuzzy set and analytical hierarchy

process (AHP). The weights obtained by AHP are highly in-

terpretable and well-accepted as expert opinion is involved.

However, such consequences may be too subjective for the

same reason. To reduce the subjectivity of AHP, Niu, et al.

[6] proposed a method combined with AHP and the infor-

mation entropy weight method to evaluate and predict the

health status of production lines.The entropy weight method

[15] calculates objective weights by considering the differ-

ence within each indicator, but the correlation between dif-

ferent indicators is neglected. As a result, when the corre-

lation between each indicator is strong, the entropy weight

method does not reflect the information contained in the data

well. Besides, most health assessment methods are static,

i.e., the weights keep constant once they are determined, and

this characteristic may underestimate the impact of the dete-

rioration of a single indicator.

In this paper, a novel assessment method for equipment

health status is proposed by combining criteria importance

through inter-criteria correlation (CRITIC) [16] and AHP.

The correlation between the indicators has been taken into

account, solving the limitation of the entropy weight method.

In the proposed method, we first use AHP to get the sub-

jective weights, and use CRITIC method to obtain the ob-

jective weights. Then by the least square method, the two

weights are combined to obtain static weights with both sub-

jective considerations of experts and objective facts in data.

In addition, a method of dynamically adjusting the weights

is utilized to reflect the actual effect of the deterioration of

individual indicators on the overall health of equipment.

The remaining of this paper is organized as follows. Sec-

tion 2 introduces the proposed assessment method based on

AHP-CRITIC dynamic weight. An illustrated example is
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shown in Section 3. In Section 4, a conclusion of this paper

is given.

2 The Health Assessment Method Based on AHP-
CRITIC Dynamic Weight

In this section, the process of using the assessment

method based on AHP-CRITIC dynamic weight is intro-

duced. Specifically, how to construct the evaluation index

system and preprocess the raw data are first introduced. We

also illustrate the process of obtaining combined weights via

AHP and CRITIC. Finally, the dynamic weight adjustment

mechanism is added to get the health index of the equipment.

2.1 Construction of evaluation index system

Suppose that there exists m equipment with the same

model that needs a health status assessment, with n indica-

tors used to monitor the health status of equipment, such as

temperature, humidity, vibration signal, and voltage. All in-

dicators are supposed to be in an ideal working range, and

each of them can reflect a particular aspect of health, with

its limitation, though. We need to combine indicators with a

proper method such that the actual health status of the whole

equipment can be reflected accurately.

To describe the health status of different equipment of the

same model (the same equipment at a different time is treated

as another equipment), we build a health indicators matrix.

In the matrix, m columns represent m different equipment,

and n rows represent n indicators, respectively. The matrix

X is as follow:

X =

⎡

⎢

⎢

⎢

⎣

x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

⎤

⎥

⎥

⎥

⎦

(1)

where xij is the value of the ith monitoring indicator of the

jth equipment, i = 1, 2, ..., n; j = 1, 2, ...,m.

2.2 Data preprocessing

Monitoring data needs to be preprocessed to bring it into

a unified form to assess health status. We convert the moni-

toring data into a score based on their ideal ranges. Suppose

the score for every indicator is between 0 and the total score

s̄ which is the score of ideal value. The score is s when the

value is at reference boundary, and satisfy 0 < s < s̄. Indi-

cators can be divided into two kinds. For the first kind, the

small the value, the higher the score. The formula of this

situation is as follow:

sij = −
s̄− s

x̄i

xij + s̄ (2)

where sij represents the score of the ith indicator of the

jth sample, and x̄i represents the upper bound of the health

range. The second kind of indicators are considered optimal

at specific values. The scores are calculated as below:

sij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(s̄− s)

x∗

i − x̄i

(xij − x∗

i ) + s̄, xij < x∗

i

(s̄− s)

x∗

i − xi

(xij − x∗

i ) + s̄, xij ≥ x∗

i

(3)

where xi represents the lower bound of the health range,

and x∗

i represents the ideal value of the ith indicator.

After the scoring process (2) and (3), we obtain a scoring

matrix S.

S =

⎡

⎢

⎢

⎢

⎣

s11 s12 · · · s1m
s21 s22 · · · s2m

...
...

. . .
...

sn1 sn2 · · · snm

⎤

⎥

⎥

⎥

⎦

(4)

where sij is the score of xij , i = 1, 2, ..., n; j = 1, 2, ...,m.

2.3 Subjective weights calculation: AHP

AHP is a multi-objective decision analysis method that

combines qualitative and quantitative analysis techniques

and is one of subjective weighting methods, based on math-

ematics and psychology [17–19]. This technique simplifies

the complex decision problem by breaking it down into sev-

eral levels and factors. Moreover, AHP can calculate the

consistency of the evaluation procedure to determine if it’s

appropriate. The steps of AHP are as below:

1) Make the problem hierarchical and determine which in-

dicators will use.

2) Compare each indicator pairwise and establish the

judgment matrix called J by a measurement scale pre-

sented in Table 1.

3) Solve Jα = λα to obtain the maximum eigenvalue λ̄

and the corresponding eigenvector ᾱ.

4) Calculate the consistency index CR according to (5) to

check consistency of J . If CR < 0.1, J passes the

consistency check.

CR =
CI

RI
(5)

where

CI =
λ̄− n

n− 1
(6)

and RI represents the random index that varies for dif-

ferent matrix dimensions, and the values are shown in

Table 2.

5) The eigenvector ᾱ needs to be normalized to make sure

they can use as weights. The calculation is as below:

ωai =
αi

n
∑

i=1

αi

(7)

where ωai is the weight of ith indicator calculated by

AHP, αi is the ith element of ᾱ, i = 1, 2, ..., n. Denote

the weight vector as ωa = [ωa1, ωa2, ..., ωan]
T . Un-

less otherwise specified, every vector in this paper is a

column vector.

2.4 Objective weights calculation: CRITIC

The CRITIC method aims to determine objective weights

of relative importance in Multi-Criteria Decision-Making

(MCDM) problem. There are another two different meth-

ods of determining objective weights in the MCDM prob-

lem: standard deviation weight method [20] and informa-

tion entropy weight method [15]. They calculate weights by
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Table 1: Measurement scale used by AHP

Intensity of

preference important
Meaning (A compared to B)

1
A is equally important

/preferred to B

3
A is moderately more

important/preferred than B

5
A is strongly more

important/preferred than B

7
A is very strongly more

important/preferred than B

9
A is extremely more

important/preferred than B

2, 4, 6, 8
The intermediate value of

the above adjacent judgments

The reciprocal

of 1, 2, ..., 9
The degree to which B

is more important/preferred than A

Table 2: Values of RI for different dimensions

Order 1 2 3 4 5 6 7 8 9 10 ...

RI 0 0 0.58 0.89 1.12 1.26 1.36 1.41 1.45 1.49 ...

considering the information within the same single indica-

tor. But when the indicators are coupled, these two methods

do poorly. Unlike them, the CRITIC method considers the

correlation between indicators, overcoming this shortcom-

ing. In this method, objective weights are determined com-

prehensively by both contrast intensity under each indicator

and correlation in the structure of the decision problem. The

contrast intensity represents the difference between the val-

ues under the same indicator, reflected by the standard devi-

ation. A larger standard deviation means more information

under this indicator, giving a larger weight. The correlation

is measured by the correlation coefficient between two indi-

cators. The larger the correlation coefficient, the larger the

similarity of information reflected by them, and the smaller

the weights.

The typical calculation process of CRITIC is as below:

1) Compute the scores as below to make sure they are in a

normalized form:

aij =
sij − si
s̄i − si

(8)

where s̄i and si represent the maximum and the min-

imum score of the ith indicator, respectively. Then a

normalized score matrix A is obtained:

A =

⎡

⎢

⎢

⎢

⎣

a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

⎤

⎥

⎥

⎥

⎦

(9)

2) Consider the vectors generated by each indicator sepa-

rately, and calculate the standard deviation σi of each

row vector Ai. The formula of standard deviation is as

below:

σi =

√

√

√

√

√

n
∑

i=1

(aij − E(ai))2

n− 1
(10)

where E(ai) is the mathematical expectation of

aij , j = 1, 2, ...,m.
3) Calculate the correlation coefficient rik which is of ith

and kth indicator as below:

rik =

m
∑

j=1

(aij − E(ai))(akj − E(ak))

√

m
∑

j=1

(aij − E(ai))2

√

m
∑

j=1

(akj − E(ak))2

(11)

where i, k = 1, 2, ..., n. Denote the correlation coeffi-

cient matrix as R = (rik)n×n.

4) Calculate the amount of information ci of the ith indi-

cator as follow:

ci = σi

n
∑

k=1

(1− rik) (12)

Form ci into a vector of the amount of information c.

5) The vector of the amount of information c needs to be

normalized. The normalization process is as below:

ωci =
ci
n
∑

i=1

ci

(13)

where ωci is the weight of ith indicator calculated by

CRITIC, i = 1, 2, ..., n. Denote the weight vector as

ωc = [ωc1, ωc2, ..., ωcn]
T .

2.5 AHP-CRITIC combined weight

After the calculation of AHP and CRITIC, we get a sub-

jective weight vector ωa and an objective one ωc. A method

is needed to combine the weights of AHP and CRITIC. We

use the least square method to calculate the combined static

weight ωs, as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
ωs

n
∑

i=1

[(ωsi − ωai)
2 + (ωsi − ωci)

2]

s.t.
n
∑

i=1

ωsi = 1, ωsi ≥ 0, j = 1, 2, ..., n
(14)

where ωsi represents the ith element of the static weight vec-

tor ωs combined by ωa and ωc.

2.6 Dynamic weight mechanism

In the conventional health status assessment method, the

weight of each indicator always keep constant after being

determined. Suppose the value of some indicator is beyond

the normal range. In that case, it is possible that the health

index still indicates that the equipment works fine because

the weight of this indicator is relatively small. This situation

shows that static weighting methods have their inherent dis-

advantages. The weight of an indicator needs to increase as

it deteriorates. Consequently, a dynamic weight mechanism

is proposed in this paper to avoid abnormal conditions being

ignored. In general, the risk of failure multiplies with the de-

viation of indicators. Thus, the dynamic weight should also

multiply to assess the actual health status, which is precisely

the nature of exponential functions. We use an exponential

function as below to adjust weight:

ωdi = μδi
i ωsi (15)
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where ωdi represents the dynamic weight of ith indicator,

and μi represents the base number of the ith indicator, and

δi =
|xi − xi0|

x̄i − xi

(16)

where x̄i, xi, and xi0 represent the maximum reference

value, the minimum one and the ideal one, of the ith indi-

cator, respectively.

At last, the weights ωdi need to be normalized. The nor-

malization process is as below:

ωi =
ωdi

n
∑

i=1

ωdi

(17)

where ωdi is the weight of ith indicator obtained in (15),

i = 1, 2, ..., n. Let ω = [ω1, ω2, ..., ωn]
T .

The result ω is the final weight vector of the indicators

used to assess the health index H of equipment. Suppose

that the score vector of an equipment is s, the calculation of

H is as below:

H = ωT · s

3 Case Study

Surface mount technology (SMT) is a critical technology

in the electronics industry, and a chip mounter is a key equip-

ment in the SMT production line system. The primary func-

tion of a chip mounter, mounting the chip to the printed

circuit board (PCB), is implemented by its suction nozzles.

Most of the SMT production line failures come from the suc-

tion nozzles of chip mounters, which significantly affect pro-

duction efficiency and product quality. Therefore, ensuring

the health of the chip mounter suction nozzle is of great sig-

nificance to ensure the normal production of the SMT pro-

duction line and good product quality.

We use the monitoring data of different suction nozzles

of a chip mounter in a laptop factory to do an case study.

We select 11 suction nozzles of the same model. More than

20 indicators are used to monitor the working condition of

suction nozzles of a specific type of chip mounter, including

some being less referential. Combining expert experience

with data, we exclude indicators that are not critical to health

status, and six indicators are selected, as shown in Table 4.

These representative and measurable indicators can build a

health assessment index system.

Suppose that the total score of the health index s̄ = 100,

and the score of the boundary score s = 60, then the health

index can take the value between 0 to 100. Different score

segments are divided into different health levels according to

expert experience, and the relationship is shown in Table 3.

The essential data of the monitoring indicators of differ-

ent suction nozzles of this chip mounter is shown in Table 4,

including the raw data , the ideal value vector x∗, the maxi-

mum reference value vector x̄, the minimum reference value

vector x, and the base number vector µ. Bold numbers rep-

resent values outside the reference range.

The experiment is carried out in Windows10 and MAT-

LAB environments. The weights calculated by AHP,

CRITIC, and the combined static one are shown in Table 5.

The health index is the weighted average of the scores (4).

To make a comparison, we use the weights ωa, ωc, ωs, and

Table 3: Health levels of the health assessment

Serial

numbers

Health

Level

Range of

Health Index
Description

I
Perfect

Health
[85, 100]

The equipment is in perfect

health and safety

II Health [70, 85)
The equipment is in good

health and safety

III Sub-health [60, 70)

The equipment is not safe,

with slight signs of failure

and the requirement of

better monitoring

IV Failure [40, 60)

The equipment is very

unsafe with severe signs

of failure and requires

soon repair

V
Complete

failure
[0, 40)

The equipment is entirely

out of order and requires

immediate repair

ω obtained in (7), (13), (14), and (17), respectively to calcu-

late the final health indexes of the suction nozzles. Besides,

He represents the health indexes given by experts. The re-

sults are shown in Fig. 1.

0 1 2 3 4 5 6 7 8 9 10 11
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d
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H
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H
c

H
s

H

H
e

Fig. 1: Health indexes get from different way

In general, the indexes obtained by the dynamic weight

method are closer to experts’ opinions. It can be seen that

the health indexes calculated by ωa, ωc and ωs are close.

This phenomenon means that the weights get by AHP and

CRITIC, respectively, are consistent with each other to a cer-

tain extent. However, the static weight method gives some

suction nozzles scores of more than 80, even with some in-

dicators being out of the reference range, e.g., sample 11.

As a comparison, the health index calculated by the dy-

namic weight ω can reflect the health status more accurately.

As we can see, samples 1 to sample 6, whose indicators

are within the reference range, all get indexes over 80. But

sample 1, sample 3, and sample 6 have some indicators ap-

proaching but not going beyond the reference range bound-

ary, so their indexes are below 85, and their health level

is “Health” rather than “Perfect health”. The situation that

these indexed below 85 is a reminder to engineers, not re-
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Table 4: Important data of chip mounter suction nozzles

Indicators\Serial numbers 1 2 3 4 5 6 7 8 9 10 11 x∗ x̄ x µ

Blow on leakage 14 14 14 14 14 14 13 17 22 24 22 12.5 20 5 35

Vacuum on leakage −23 −24 −20 −21 −22 −26 −23 -33 -41 -41 -35 −18.5 −5 −32 80

Vacuum on blockage −90 −92 −89 −90 −90 −90 -87 −90 −89 -84 −92 −94 −88 −100 100

Blow valve on delay 11 10 9 10 10 10 9 7 8 9 9 9.5 13 6 30

Blow valve off delay 8 7 7 7 7 8 7 5 7 9 8 7.5 11 4 40

Vacuum on delay 4 7 6 5 5 7 7 6 5 5 5 5.5 9 2 35

Table 5: Weights calculated by different methods

Indicators ωa ωc ωs

Blow on leakage 0.085 0.156 0.120

Vacuum on leakage 0.101 0.130 0.115

Vacuum on blockage 0.127 0.144 0.136

Blow valve on delay 0.165 0.142 0.154

Blow valve off delay 0.186 0.126 0.156

Vacuum on delay 0.335 0.305 0.320

flected in the static weight method.

In addition, the assessment method with dynamic weight-

ing mechanism has more advantages than the static one. The

samples with indicators out of the reference range have lower

indexes, obviously. For example, sample 10 has three indi-

cators out of the ideal range, and the health index of this

sample is 38.1, notifying everyone that this sample is in fail-

ure condition.

The assessment on sample 9 is an excellent example of

the gap between the weighting methods with and without the

dynamic adjustment mechanism. As the indicator “Vacuum

on blockage” of sample 9 is far from the reference range, it

is actually in a failure condition. However, the assessment

result given by the AHP-CRITIC weighting method with-

out the dynamic adjustment mechanism is “Health”, being

very different from the actual situation. On the contrary, the

dynamic weighting method reflects the actual health status,

giving sample 9 a health index of 26.86. The health index H

changes linearly in the static method, so the influence of the

extreme situation that single indicator deteriorate seriously is

limited. This shortcoming is remedied due to the nonlinear

of the dynamic weighting method. In this case, the dynamic

weight method gives out an appropriate assessment. To sum

up, it is crucial to adjust the weights dynamically in health

assessment, and the method proposed in this paper is refer-

ential.

4 Conclusions

An assessment method based on AHP-CRITIC dynamic

weight for equipment health status is proposed in this pa-

per. The AHP and CRITIC methods are combined to obtain

weights, including opinions of experts and the information

of data. After that, a dynamic weight adjustment mechanism

is utilized to highlight the effects of indicators that deviate

far from the ideal range. The case study for suction noz-

zles shows the effectiveness and superiority of the proposed

method.
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